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"Thisisthefirst book that promises to tell the deep, dark secrets of computer
arithmetic, and it deliversin spades. It contains every trick | knew plus many, many
more. A godsend for library developers, compiler writers, and lovers of elegant hacks,
it deserves a spot on your shelf right next to Knuth.”-Josh Bloch

"When | first saw thetitle, | figured that the book must be either a cookbook for
breaking into computers (unlikely) or some sort of compendium of little programming
tricks. It's the latter, but it's thorough, almost encyclopedic, in its coverage." -Guy
Steele

These are the timesaving techniques relished by computer hackers-those devoted and
persistent code developers who seek elegant and efficient ways to build better
software. The truth is that much of the computer programmer's job involves a healthy
mix of arithmetic and logic. In Hacker's Delight, veteran programmer Hank Warren
shares the tricks he has collected from his considerable experience in the worlds of
application and system programming. Most of these techniques are eminently
practical, but afew are included just because they are interesting and unexpected. The
resulting work is an irresistible collection that will help even the most seasoned
programmers better their craft.

Topics covered include:
e A broad collection of useful programming tricks
e  Small algorithms for common tasks
«  Power-of-2 boundaries and bounds checking
* Rearranging bits and bytes
* Integer division and division by constants

«  Some elementary functions on integers
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« Gray code
*  Hilbert's space-filling curve
 And even formulas for prime numbersl!

This book is for anyone who wants to create efficient code. Hacker's Delight will help
you learn to program at a higher level-well beyond what is generally taught in schools
and training courses-and will advance you substantially further than is possible
through ordinary self-study aone.
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Foreword

When | first got asummer job at MIT's Project MAC almost 30 years ago, | was delighted to be able to work
with the DEC PDP-10 computer, which was more fun to program in assembly language than any other
computer, bar none, because of itsrich yet tractable set of instructions for performing bit tests, bit masking,
field manipulation, and operations on integers. Though the PDP-10 has not been manufactured for quite some
years, there remains a thriving cult of enthusiasts who keep old PDP-10 hardware running and who run old
PDP-10 software—entire operating systems and their applications—by using personal computers to ssmulate
the PDP-10 instruction set. They even write new software; thereis now at least one Web site whose pages are
served up by asimulated PDP-10. (Come on, stop laughing—it's no sillier than keeping antique cars running.)

| also enjoyed, in that summer of 1972, reading a brand-new MIT research memo called HAKMEM, abizarre
[1]
and eclectic potpourri of technical trivia.  The subject matter ranged from electrical circuits to number theory,
but what intrigued me most was its small catalog of ingenious little programming tricks. Each such gem would
typically describe some plausible yet unusual operation on integers or bit strings (such as counting the 1-bitsin
aword) that could easily be programmed using either alongish fixed sequence of machine instructions or a
loop, and then show how the same thing might be done much more cleverly, using just four or three or two
carefully chosen instructions whose interactions are not at all obvious until explained or fathomed. For me,
devouring these little programming nuggets was like eating peanuts, or rather bonbons—I just couldn't stop—
and there was a certain richness to them, a certain intellectual depth, elegance, even poetry.

[1] Why "HAKMEM"? Short for "hacks memao"; one 36-bit PDP-10 word could hold six 6-bit characters, so a lot of the
names PDP-10 hackers worked with were limited to six characters. We were used to glancing at a six-character
abbreviated name and instantly decoding the contractions. So haming the memo "HAKMEM" made sense at the time
—at least to the hackers.

"Surely," | thought, "there must be more of these," and indeed over the years | collected, and in some cases
discovered, afew more. "There ought to be a book of them."

| was genuinely thrilled when | saw Hank Warren's manuscript. He has systematically collected these little
programming tricks, organized them thematically, and explained them clearly. While some of them may be
described in terms of machine instructions, thisis not a book only for assembly language programmers. The
subject matter is basic structural relationships among integers and bit strings in a computer and efficient
techniques for performing useful operations on them.

These techniques are just as useful in the C or Java programming languages as they are in assembly language.

Many books on algorithms and data structures teach complicated techniques for sorting and searching, for
maintaining hash tables and binary trees, for dealing with records and pointers. They overlook what can be
done with very tiny pieces of data—bits and arrays of bits. It is amazing what can be done with just binary
addition and subtraction and maybe some bitwise operations; the fact that the carry chain allows asingle bit to
affect all the bits to its left makes addition a peculiarly powerful data manipulation operation in ways that are
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not widely appreciated.

Y es, there ought to be a book about these techniques. Now it isin your hands, and it'sterrific. If you write
optimizing compilers or high-performance code, you must read this book. Y ou otherwise might not use this bag
of tricks every single day—but if you find yourself stuck in some situation where you apparently need to loop
over the bitsin aword, or to perform some operation on integers and it just seems harder to code than it ought,
or you really need the inner loop of some integer or bit-fiddly computation to run twice as fast, then thisisthe
place to look. Or maybe you'll just find yourself reading it straight through out of sheer pleasure.

Guy L. Steele, Jr.
Burlington, Massachusetts
April 2002



Preface

Caveat Emptor: The cost of software maintenance increases with the square of the programmer's creativity.
—First Law of Programmer Creativity, Robert D. Bliss, 1992

Thisisacollection of small programming tricks that | have come across over many years. Most of them will
work only on computers that represent integers in two's-complement form. Although a 32-bit machineis
assumed when the register length is relevant, most of the tricks are easily adapted to machines with other
register sizes.

This book does not deal with large tricks such as sophisticated sorting and compiler optimization techniques.
Rather, it deals with small tricks that usually involve individual computer words or instructions, such as
counting the number of 1-bitsin aword. Such tricks often use a mixture of arithmetic and logical instructions.

It is assumed throughout that integer overflow interrupts have been masked off, so they cannot occur. C,
Fortran, and even Java programs run in this environment, but Pascal and ADA users beware!

The presentation isinformal. Proofs are given only when the algorithm is not obvious, and sometimes not even
then. The methods use computer arithmetic, "floor" functions, mixtures of arithmetic and logical operations,
and so on. Proofs in this domain are often difficult and awkward to express.

To reduce typographical errors and oversights, many of the algorithms have been executed. Thisiswhy they
are given in area programming language, even though, like every computer language, it has some ugly
features. C is used for the high-level language because it iswidely known, it allows the straightforward mixture
of integer and bit-string operations, and C compilers that produce high-quality object code are available.

Occasionally, machine language is used. It employs a three-address format, mainly for ease of readability. The
assembly language used is that of afictitious machine that is representative of today's RISC computers.

Branch-free code is favored. Thisis because on many computers, branches slow down instruction fetching and
inhibit executing instructions in parallel. Another problem with branchesis that they may inhibit compiler
optimizations such as instruction scheduling, commoning, and register allocation. That is, the compiler may be
more effective at these optimizations with a program that consists of afew large basic blocks rather than many
small ones.

The code sequences also tend to favor small immediate values, comparisons to zero (rather than to some other
number), and instruction-level parallelism. Although much of the code would become more concise by using
table lookups (from memory), thisis not often mentioned. Thisis because loads are becoming more expensive
relative to arithmetic instructions, and the table lookup methods are often not very interesting (although they
are often practical). But there are exceptional cases.



Finally, I should mention that the term "hacker” in the title is meant in the original sense of an aficionado of
computers—someone who enjoys making computers do new things, or do old thingsin a new and clever way.
The hacker isusually quite good at his craft, but may very well not be a professional computer programmer or
designer. The hacker's work may be useful or may be just a game. As an example of the latter, more than one

[1]
determined hacker has written a program which, when executed, writes out an exact copy of itself.  Thisis
the sense in which we use the term "hacker." If you're looking for tips on how to break into someone else's
computer, you won't find them here.

[1] The shortest such program written in C, known to the present author, is by Vlad Taeerov and Rashit Fakhreyev and
is 64 characters in length:

mai n(a){printf(a,34,a="main(a){printf(a, 34, a=%%%, 34);}",34);}
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Chapter 1. Introduction

Notation

Instruction Set and Execution Time Model
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1-1 Notation

This book distinguishes between mathematical expressions of ordinary arithmetic and those that describe the
operation of acomputer. In "computer arithmetic," operands are bit strings, or bit vectors, of some definite
fixed length. Expressions in computer arithmetic are similar to those of ordinary arithmetic, but the variables
denote the contents of computer registers. The value of a computer arithmetic expression is ssmply a string of
bits with no particular interpretation. An operator, however, interprets its operands in some particular way. For
example, a comparison operator might interpret its operands as signed binary integers or as unsigned binary
integers, our computer arithmetic notation uses distinct symbols to make the type of comparison clear.

The main difference between computer arithmetic and ordinary arithmetic is that in computer arithmetic, the
results of addition, subtraction, and multiplication are reduced modulo 2", where n is the word size of the
machine. Another difference is that computer arithmetic includes alarge number of operations. In addition to
the four basic arithmetic operations, computer arithmetic includes logical and, exclusive or, compare, shift |eft,
and so on.

Unless specified otherwise, the word size is 32 bits, and signed integers are represented in two's-complement
form.

Expressions of computer arithmetic are written similarly to those of ordinary arithmetic, except that the
variables that denote the contents of computer registers are in bold-face type. This convention is commonly
used in vector algebra. We regard a computer word as a vector of single bits. Constants also appear in bold-face
type when they denote the contents of a computer register. (This has no analogy with vector algebra becausein
vector algebrathe only way to write a constant is to display the vector's components.) When a constant denotes
part of an instruction, such as the immediate field of a shift instruction, light-face typeis used.

If an operator such as"+" has bold-face operands, then that operator denotes the computer's addition operation
("vector addition"). If the operands are light-faced, then the operator denotes the ordinary scalar arithmetic
operation. We use alight-faced variable x to denote the arithmetic value of a bold-faced variable x under an
interpretation (signed or unsigned) that should be clear from the context. Thus, if x = 0x80000000 and y =
0x80000000, then, under signed integer interpretation, x =y =-231, x + y=-232 and x + y = 0. Here,
0x80000000 is hexadecimal notation for a bit string consisting of a 1-bit followed by 31 0-bits.

Bits are numbered from the right, with the rightmost (least significant) bit being bit 0. The terms "bits,"
"nibbles,” "bytes," "halfwords," "words," and "doublewords" refer to lengths of 1, 4, 8, 16, 32, and 64 bits,
respectively.

Short and simple sections of code are written in computer algebra, using its assignment operator (left arrow)
and occasionally an if statement. In thisrole, computer algebrais serving as little more than a machine-
independent way of writing assembly language code.

Longer or more complex computer programs are written in the C** programming language. None of the object-



oriented features of C** are used; the programs are basically in C with commentsin C** style. When the
distinction is unimportant, the language is referred to simply as"C."

A complete description of C would be out of place in this book, but Table 1-1 contains a brief summary of most
of the elements of C [H& §] that are used herein. Thisis provided for the benefit of the reader who is familiar

with some procedural programming language but not with C. Table 1-1 also shows the operators of our

computer-algebraic arithmetic language. Operators are listed from highest precedence (tightest binding) to
lowest. In the Precedence column, L means |eft-associative; that is,

a*h+*c=(a*h)*c

and R means right-associative. Our computer-algebraic notation follows C in precedence and associativity.

In addition to the notations described in Table 1-1, those of Boolean algebra and of standard mathematics are
used, with explanations where necessary.

Table 1-1. Expressions of C and Computer Algebra

Precedence C Computer Algebra Description
0x... 0x..., Ob... Hexadecimal, binary constants
16 al K] Selecting the kth component
16 Xgr X1, oee Different variables, or bit selection (clarified in text)
16 f(x,...) f(x, ...) Function evaluation
16 abs(x) Absolute value (but abs(-231) = -231)
16 nabs(x) Negative of the absolute value
15 X++, X-- Postincrement, decrement
14 ++X, --X Preincrement, decrement
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14 ( type name) X Type conversion

14R xkK X to the kth power

14 ~X X, X Bitwise not (one's-complement)

14 F'X Logical not (if x =0then 1 else 0)

14 - X -X Arithmetic negation

13L X*y X *y Multiplication, modulo word size

13 L X/'y X +y Signed integer division

13L X!y x Ly, Unsigned integer division

13L X %y rem(x, y) Remainder (may be negative), of (x +y) signed
arguments

3L Xy rem(x, y) Remainder of ** + ¥ unsigned arguments

mod(X, y) x reduced modulo y to the interval [0, abs(y) - 1];

signed arguments

12L X +y, X-Y K+yx-y Addition, subtraction

11L X << Y, X 2>V |y pox oy Shift left, right with O-fill ("logical” shifts)

1L X >>Yy X » Sh_ift right with sign-fill ("arithmetic" or "algebraic"
shift)

1L Rotate shift |eft, right

it it
X PN Y




10L X <Yy, X <=Y, x<y,x':—:y, Signed comparison
X >y, X >=y oy x 2y,
10L X <Yy, X <=Y, .r-’i:_p,r%_v,_, Unsigned comparison
XY, X ==y XmpXxEy
oL X ==y, Xx!=y x=y,x¢y Equality, inequality
8L X &Yy X & Y Bitwise and
7L X Ny x$y Bitwise exclusive or
7L x =y Bitwise equivalence (=(x By))
6L X [y X |y Bitwise or
5L X && Y IEE}' gonditional and (if x=0then O elseif y=0then 0
sel)
4L x 1y x|y Conditional or (if x =0 then 1 elseif y =0 then 1
else 0)
3L x|y Concatenation
2R X =Y X =y Assignment

Our computer algebra uses other functions, in addition to "abs," "rem," and so on. These are defined where
introduced.

In C, the expression X <y < zZ meansto evaluate X <y to a0/1-valued result, and then compare that result to
Z. In computer algebra, the expressonx <y<zmeans (X <y) & (y < 2).

C hasthree loop control statements: whi | €, do, andf or . Thewhi | e statement iswritten:



whi | e (expression) statement

First, expression is evaluated. If true (nonzero), statement is executed and control returnsto evaluate
expression again. If expression is false (0), the while-loop terminates.

The do statement is similar, except the test is at the bottom of the loop. It is written:
do statement whi | e (expression)

First, statement is executed, and then expression is evaluated. If true, the process is repeated, and if false, the
loop terminates.

Thef or statement iswritten:
for (e ey e3) statement

First, e;, usually an assignment statement, is executed. Then e,, usually a comparison, is evaluated. If false, the
for-loop terminates. If true, statement is executed. Finally, e, usually an assignment statement, is executed,
and control returnsto evaluate e, again. Thus, the familiar "doi = 1 to n" iswritten:

for (1 = 1; i <= n; |++)

(Thisisone of the few contexts in which we use the postincrement operator.)



1-2 Instruction Set and Execution Time Model

To permit arough comparison of algorithms, we imagine them being coded for a machine with an instruction
set similar to that of today's general purpose RISC computers, such as the Compaqg Alpha, the SGI MIPS, and
the IBM RS/6000. The machine is three-address and has afairly large number of general purpose registers—
that is, 16 or more. Unless otherwise specified, the registers are 32 bits long. General register O contains a
permanent O, and the others can be used uniformly for any purpose.

In the interest of simplicity there are no "special purpose” registers, such as a condition register or aregister to
hold status bits, such as"overflow." No floating-point operations are described, because that is beyond the
scope of this book.

We recognize two varieties of RISC: a"basic RISC," having the instructions shown in Table 1-2, and a "full
RISC," having al the instructions of the basic RISC plus those shown in Table 1-3.

Table 1-2. Basic RISC Instruction Set

Opcode M nemonic Operands Description

add, sub, mul, div, divu, RT, RA, RB |RT «=RA op RB, whereop isadd,

rem renu subtract, multiply, divide signed, divide
unsigned, remainder signed, or remainder
unsigned.

addi, mull RT, RA, | RT +=RA op | ,whereop isadd or
multiply, and | isa 16-bit signed immediate
value.

addi s RT, RA, | RT+RA + (I || 0x0000).

and, or, Xxor RT, RA, RB |RT «+=RA op RB, whereop is bitwise and,
or, or exclusive or.

andi, ori, Xxorl RT, RA, U |Asabove, except the last operand is a 16-bit
unsigned immediate value.
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beq, bne, blt, ble, bgt, bge [RT.Target g targetif RT = 0, or if RT 20, or if
RT <0, or if RT <0, or if RT >0, or if RT
20 (signed integer interpretation of RT).

bt, Dbf RT, t ar get |Branch trueffalse; same asbne/beq resp.

cnpeqg, cnpne, cnplt, cnple, RT, RA, RB |RT gets the result of comparing RA with RB; 0
cnpgt, cnpge, cnpltu, cnpleu, if falseand 1 if true. Mnemonics denote
cnpgt u, cnpgeu compare for equality, inequality, lessthan, and
so on, as for the branch instructions, and in
addition, the suffix "u" denotes an unsigned

comparison.
cnpi eq, cnpine, cnpilt, RT, RA, | Like cnpeq, and so on, except the second
cnpil e, cnpigt, cnpige comparand is a 16-bit signed immediate value.
cnpi equ, cnpi neu, cnpi | tu, RT, RA, I'u |Likecnpl t u, and so on, except the second
cnpi | eu, cnpi gtu, cnpigeu comparand is a 16-bit unsigned immediate
value.
| dbu, | dh, [|dhu, |dw RT, d( RA)  |Load an unsigned byte, signed halfword,

unsigned halfword, or word into RT from
memory at location RA + d, whered isa16-
bit signed immediate value.

mul hs, mul hu RIT, RA, RB  |RT gets the high-order 32 bits of the product of
RA and RB; signed and unsigned.

not RT, RA RT «=bitwise one's-complement of RA.

shl, shr, shrs RT, RA, RB |RT +—RA shifted l€ft or right by the amount
given in the rightmost six bits of RB; O-fill
except for shr s, which issign-fill. (The shift
amount is treated modulo 64.)

shli, shri, shrsi RT, RA, I U |RT +=RA shifted |eft or right by the amount
given in the 5-bit immediate field.




stb, sth, stw RS, d( RA) |Store abyte, hafword, or word, from RS into
memory at location RA + d, whered isa 16-
bit signed immediate value.

In these brief instruction descriptions, RA and RB appearing as source operands really means the contents of
those registers.

A real machine would have branch and link (for subroutine calls), branch to the address contained in aregister
(for subroutine returns and "switches"), and possibly some instructions for dealing with specia purpose
registers. It would, of course, have a number of privileged instructions and instructions for calling on supervisor
services. It might also have floating-point instructions.

Some other computational instructions that a RISC computer might have are identified in Table 1-3. These are
discussed in later chapters.

Table 1-3. Additional Instructions for the "Full RISC"

Opcode Mnemonic Operands Description

abs, nabs RT, RA RT gets the absolute value, or the negative of
the absolute value, of RA.

andc, eqv, nand, nor, orc RIT, RA, RB  |Bitwise and with complement (of RB),
equivalence, negative and, negative or, and or
with complement.

extr RT, RA, |, L |Extract bits| through | +L- 1 of RA, and
place them right-adjusted in RT, with O-fill.

extrs RT, RA, I, L |Likeext r, but sign-fill.

i ns RT, RA, I, L |Insert bits 0 through L- 1 of RA into bits |
through | +L- 1 of RT.

nl z RT, RA RT gets the number of leading O'sin RA (0 to
32).
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pop RT, RA RT gets the number of 1-bitsin RA (0 to 32).

| db RI, d( RA) |Load asigned byteinto RT from memory at
location RA + d, whered isa16-bit signed
immediate value.

moveq, novne, novlt, novle, RERARB o7 «—RBIif RA= 0, or if RA 70, and s0 on,

movgt, novge else RT isunchanged.

shlr, shrr RT, RA, RB |RT +=RA rotate-shifted Ieft or right by the
amount given in the rightmost five bits of RB.

shlri, shrri RT, RA, | u |RT «=RA rotate-shifted left or right by the
amount given in the 5-bit immediate field.

trpeq, trpne, trplt, trple, RA, RB Trap (interrupt) if RA=RB, or RA?’-'RB,

trpgt, trpge, trpltu, trpleu, and so on.

trpgtu, trpgeu

trpieq, trpine, trpilt, RA, | Liket r peq, and so on, except the second

trpile, trpigt, trpige comparand is a 16-bit signed immediate value.

trpigtu, trpigeutrpiequ, RA, l'u Liket r pl t u, and so on, except the second

trpineu, trpiltu, trpileu, comparand is a 16-bit unsigned immediate
value.

It is convenient to provide the machine's assembler with afew "extended mnemonics.” These are like macros
whose expansion is usually a single instruction. Some possibilities are shown in Table 1-4.

Table 1-4. Extended Mnemonics

Extended M nemonic

Expansion

Description

b target

peq RO, target

Unconditional branch.

1 RT, 1

See text

Load immediate, -231 S| <232
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mov RT, RA ori RI, RA 0O Move register RAto RT.

neg RT, RA sub RT, RO, RA Negate (two's-complement).

subl RT, RA, | addi RT, RA, -| Subtract immediate (| 7=- 215),

The load immediate instruction expands into one or two instructions, as required by the immediate value |. For

example, if O <| < 216, an or immediate (or i ) from RO can be used. If -215 < <0, an add immediate
(addi ) from RO can be used. If the rightmost 16 bits of | are 0, add immediate shifted (addi s) can be used.
Otherwise, two instructions are required, such asaddi s followed by or | . (Alternatively, in the last case a

load from memory could be used, but for execution time and space estimates we assume that two elementary
arithmetic instructions are used.)

Of course, which instructions belong in the basic RISC, and which belong in the full RISC isvery much a
matter of judgment. Quite possibly, divide unsigned and the remainder instructions should be moved to the full
RISC category. Shift right signed is another suspicious instruction, given its low frequency of usein the SPEC
benchmarks. The troubleis, in C it is easy to accidentally use these instructions, by doing a division with
unsigned operands when they could just as well be signed, and by doing a shift right with a signed quantity

(i nt) that could just as well be unsigned. Incidentally, shift right signed (or shift right arithmetic, asit is often

called) does not do adivision of asigned integer by a power of 2; you need to add 1 to the result if the dividend
is negative and any nonzero bits are shifted out.

The distinction between basic and full RISC involves many other such questionable judgments, but we won't
dwell on them.

The instructions are limited to two source registers and one target, which ssmplifies the computer (e.g., the
register file requires no more than two read ports and one write port). It a'so simplifies an optimizing compiler,
because the compiler does not need to deal with instructions that have multiple targets. The price paid for thisis
that a program that wants both the quotient and remainder of two numbers (not uncommon) must execute two
instructions (divide and remainder). The usual machine division algorithm produces the remainder as a by-
product, so many machines make them both available as aresult of one execution of divide. Similar remarks
apply to obtaining the doubleword product of two words.

The conditional move instructions (e.g., MOV e() ostensibly have only two source operands, but in a sense they

have three. Because the result of the instruction depends on the values in RT, RA, and RB, a machine that
executes instructions out of order must treat RT in these instructions as both a use and a set. That is, an
instruction that sets RT, followed by a conditional move that sets RT, must be executed in that order, and the
result of the first instruction cannot be discarded. Thus, the designer of such a machine may elect to omit the
conditional move instructions to avoid having to consider an instruction with (logically) three source operands.
On the other hand, the conditional move instructions do save branches.



Instruction formats are not relevant to the purposes of this book, but the full RISC instruction set described
above, with floating point and afew supervisory instructions added, can be implemented with 32-hbit
instructions on a machine with 32 general purpose registers (5-bit register fields). By reducing the immediate
fields of compare, load, store, and trap instructions to 14 bits, the same holds for a machine with 64 general
purpose registers (6-hit register fields).

Execution Time

We assume that al instructions execute in one cycle, except for the multiply, divide, and remainder
instructions, for which we do not assume any particular execution time. Branches take one cycle whether they
branch or fall through.

The load immediate instruction is counted as one or two cycles, depending on whether one or two elementary
arithmetic instructions are required to generate the constant in aregister.

Although load and store instructions are not often used in this book, we assume they take one cycle and ignore
any load delay (time lapse between when aload instruction completes in the arithmetic unit, and when the
requested datais available for a subsequent instruction).

However, knowing the number of cycles used by all the arithmetic and logical instructionsis often insufficient
for estimating the execution time of a program. Execution can be slowed substantially by load delays and by
delaysin fetching instructions. These delays, although very important and increasing in importance, are not
discussed in this book. Another factor, one which improves execution time, iswhat is called "instruction-level
paralelism," which isfound in many contemporary RISC chips, particularly those for "high-end" machines.

These machines have multiple execution units and sufficient instruction-dispatching capability to execute
instructions in parallel when they are independent (that is, when neither uses aresult of the other, and they don't
both set the same register or status bit). Because this capability is now quite common, the presence of
independent operations is often pointed out in this book. Thus, we might say that such and such aformulacan
be coded in such away that it requires eight instructions and executes in five cycles on a machine with
unlimited instruction-level parallelism. This meansthat if the instructions are arranged in the proper order
("scheduled™), a machine with a sufficient number of adders, shifters, logical units, and registers can in
principle execute the code in five cycles.

We do not make too much of this, because machines differ greatly in their instruction-level parallelism
capabilities. For example, an IBM RS/6000 processor from ca. 1992 has a three-input adder, and can execute
two consecutive add-type instructions in parallel even when one feeds the other (e.g., an add feeding a
compare, or the base register of aload). As acontrary example, consider a simple computer, possibly for low-
cost embedded applications, that has only one read port on its register file. Normally, this machine would take
an extracycle to do a second read of the register file for an instruction that has two register input operands.
However, suppose it has a bypass so that if an instruction feeds an operand of the immediately following
instruction, then that operand is available without reading the register file. On such a machine, it is actually
advantageous if each instruction feeds the next—that is, if the code has no parallelism.
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2-1 Manipulating Rightmost Bits

Some of the formulasin this section find application in later chapters.

Use the following formulato turn off the rightmost 1-bit in aword, producing 0O if none (e.g., 01011000
==01010000):

x&(x—-1)

This may be used to determine if an unsigned integer is a power of 2; apply the formulafollowed by a O-test on
the resuilt.

Similarly, the following formula can be used to test if an unsigned integer is of the form 2" - 1 (including O or
al 1's):

x&(x+1)

Use the following formulato isolate the rightmost 1-bit, producing O if none (e.g., 01011000 =r"'00001000):

x & (—x)

Use the following formulato isolate the rightmost O-bit, producing O if none (e.g., 10100111 ='r‘OOOOlOOO):

—r & (x+1)

Use one of the following formulas to form amask that identifiesthe trailing O's, producing al 1'sif x =0 (e.g.,
01011000 =—"00000111):



—x & (x—1), or
—(x | —x), or
(x&—-x)—1

Thefirst formula has some instruction-level parallelism.

Use the following formulato form a mask that identifies the rightmost 1-bit and the trailing O's, producing all
1'sif x = 0 (e.g., 01011000 —00001111):

x@(x—-1)

Use the following formulato right-propagate the rightmost 1-bit, producing all 1'sif x = 0 (e.g., 01011000
=—01011111):

x| (x—1)

Use the following formulato turn off the rightmost contiguous string of 1-bits (e.g., 01011000 ='r‘OlOOOOOO):

(x| (x—-1)N+1) &x

This may be used to see if a nonnegative integer is of the form 2 - 2K for somej :_:'k :_:"0; apply the formula
followed by a O-test of the result.

These formulas al have dualsin the following sense. Read what the formula does, interchanging 1'sand O'sin
the description. Then, in the formula, replace x - 1 withx + 1, x + L with x - 1, -x with =(x + 1), & with |, and |
with &. Leave x and -x alone. Then the result is avalid description and formula. For example, the dual of the
first formulain this section reads as follows:

Use the following formulato turn on the rightmost 0-bit in aword, producing al 1'sif none (e.g., 10100111
=10101111):



x| (x+1)

Thereisasimple test to determine whether or not a given function can be implemented with a sequence of
add's, subtract's, and's, or's, and not's [War]. We may, of course, expand the list with other instructions that can
be composed from the basic list, such as shift left by afixed amount (which is equivalent to a sequence of
add's), or multiply. However, we exclude instructions that cannot be composed from the list. Thetest is
contained in the following theorem.

Theorem. A function mapping words to words can be implemented with word-parallel add, subtract, and, or,
and not instructions if and only if each bit of the result depends only on bits at and to the right of each input
operand.

That is, imagine trying to compute the rightmost bit of the result by looking only at the rightmost bit of each
input operand. Then, try to compute the next bit to the left by looking only at the rightmost two bits of each
input operand, and so forth. If you are successful in this, then the function can be computed with a sequence of
add's, and's, and so on. If the function cannot be computed in this right-to-left manner, then it cannot be
implemented with a sequence of such instructions.

The interesting part of thisisthe latter statement, and it is ssimply the contrapositive of the observation that the
functions add, subtract, and, or, and not can al be computed in the right-to-left manner, so any combination of
them must have this property.

To seethe"if" part of the theorem, we need a construction that is alittle awkward to explain. We illustrate it
with a specific example. Suppose that a function of two variables x and y has the right-to-left computability
property, and suppose that bit 2 of the result r is given by

Equation 1

ry = Xy | (x & py).

We number bits from right to left, O to 31. Because bit 2 of the result is afunction of bits at and to the right of
bit 2 of the input operands, bit 2 of the result is "right-to-left computable.”

Arrange the computer words X, x shifted left two, and y shifted |eft one, as shown below. Also, add a mask that
isolates bit 2.
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Xy X3g -0 X3 X3 X)X
Xag Xag ..o X X O 0
V0 Yag - V2 ¥y g U
O 0 ...01T 00
o0 ... 000

Now, form the word-parallel and of lines 2 and 3, or the result with row 1 (following Equation (1)), and and the
result with the mask (row 4 above). The result isaword of all O's except for the desired result bit in position 2.
Perform similar computations for the other bits of the result, or the 32 resulting words together, and the result is
the desired function.

This construction does not yield an efficient program; rather, it merely shows that it can be done with
instructionsin the basic list.

Using the theorem, we immediately see that there is no sequence of such instructions that turns off the leftmost
1-bit in aword, because to see if a certain 1-bit should be turned off, we must ook to the left to seeif it isthe
leftmost one. Similarly, there can be no such sequence for performing aright shift, or arotate shift, or aleft
shift by avariable amount, or for counting the number of trailing O'sin aword (to count trailing O's, the
rightmost bit of the result will be 1 if there are an odd number of trailing 0's, and we must look to the left of the
rightmost position to determine that).

A novel application of the sort of bit twiddling discussed above is the problem of finding the next higher
number after a given number that has the same number of 1-bits. You are forgiven if you are asking, "Why on
earth would anyone want to compute that?' It has application where bit strings are used to represent subsets.
The possible members of aset are listed in alinear array, and a subset is represented by a word or sequence of
wordsin which bit i ison if member i isin the subset. Set unions are computed by the logical or of the bit
strings, intersections by and's, and so on.

Y ou might want to iterate through all the subsets of a given size. Thisis easily done if you have afunction that
maps a given subset to the next higher number (interpreting the subset string as an integer) with the same
number of 1-bits.

[1]
A concise algorithm for this operation was devised by R. W. Gosper [HAK, item 175].  Given aword x that
represents a subset, the ideais to find the rightmost contiguous group of 1'sin x and the following O's, and
"increment” that quantity to the next value that has the same number of 1's. For example, the string xxx0 1111
0000, where xxx represents arbitrary bits, becomes xxx1 0000 0111. The algorithm first identifies the
"smallest” 1-bit in x, with s=x & -X, giving 000000010000. Thisis added to x, giving r = xxx100000000. The
1-bit here is one bit of the result. For the other bits, we need to produce aright-adjusted string of n- 1 1's,
where n isthe size of the rightmost group of 1'sin x. This can be done by first forming the exclusive or of r and
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X, which gives 0001 1111 0000 in our example.

[1] A variation of this algorithm appears in [H&S] sec. 7.6.7.

This has two too many 1's, and needs to be right-adjusted. This can be accomplished by dividing it by s, which
right-adjustsit (sis apower of 2), and shifting it right two more positions to discard the two unwanted bits. The
final result isthe or of thisand r.

In computer algebra notation, the result isy in

Equation 2

se—x & x
Fre—s+x

yer| (((x@r)=2)1s)

A complete C procedureis given in Figure 2-1. It executes in seven basic RISC instructions, one of which is
division. (Do not use this procedure with x = 0O; that causes division by 0.)

Figure 2-1 Next higher number with same number of 1-bits.
unsi gned snoob(unsi gned x) {

unsi gned smal l est, ripple, ones;
/[l x = xxx0 1111 0000

smal lest = x & -X; [/ 0000 0001 0000
ripple = x + smal | est; /] xxx1 0000 0000
ones = x ™ ripple; /] 0001 1111 0000
ones = (ones >> 2)/smallest; // 0000 0000 0111
return ripple | ones; /] xxx1 0000 0111

If division is slow but you have afast way to compute the number of trailing zeros function ntz(x), the number
of leading zeros function nlz(x), or population count (pop(x) is the number of 1-bitsin x), then the last line of
Equation (2) can be replaced with one of the following:
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yer | ((x@r)= (2 +ntz(x)))

yper | ((x @ r) = (33 —nlz(s)))
yer | ((1=<(poplx@r)-2))-1)



2-2 Addition Combined with Logical Operations

We assume the reader isfamiliar with the elementary identities of ordinary algebra and Boolean algebra. Below
isaselection of similar identities involving addition and subtraction combined with logical operations:

a -x = —x+1
b = =lx—1)
c —Xx = -x-1
d ——x = x+1

e -—x =x-1

x+ty=x-—=y-1

Sx@p)tilxd&y)

9.

h = (x| pHx&y)

i =2x | - (xDy)

i x—p=x+-pt+l

k. = (x@py)-2~x& )
= (x&—y)-(nx & y)

m. =2(x&—p)-(x@Y)

xBy=(x|y-(x&y)



o x& oy =(x|y)-y

0. = x-(x& y)

q —(x—y) =y-x-1

r. - oAty

S x=y=(x&p)-(x | y-1
t. =(x&y)t-(x | y)
0 x|yp=(x&=-pty

v x&y = (—x | y)-—x

Equation (d) may be applied to itself repeatedly, giving -—--x = X + 2, and so on. Similarly, from (e) we have -
—=-=-X = X - 2. SO we can add or subtract any constant, using only the two forms of complementation.

Equation (f) isthe dual of (j), where (j) isthe well-known relation that shows how to build a subtracter from an
adder.

Equations (g) and (h) are from HAKMEM memo [HAK, item 23]. Equation (g) forms a sum by first computing

the sum with carriesignored (x @y) and then adding in the carries. Equation (h) is simply modifying the
addition operands so that the combination O + 1 never occurs at any bit position; it is replaced with 1 + 0.

It can be shown that in the ordinary addition of binary numbers with each bit independently equally likely to be
O or 1, acarry occurs at each position with probability about 0.5. However, for an adder built by
preconditioning the inputs using (g), the probability is about 0.25. This observation is probably not of valuein
building an adder, because for that purpose the important characteristic is the maximum number of logic
circuits the carry must pass through, and using (g) reduces the number of stages the carry propagates through by
only one.

Equations (k) and () are duals of (g) and (h), for subtraction. That is, (k) has the interpretation of first forming

the difference ignoring the borrows (x $y), and then subtracting the borrows. Similarly, Equation (I) is ssmply
modifying the subtraction operands so that the combination 1 - 1 never occurs at any bit position; it is replaced
with 0 - 0.
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Equation (n) shows how to implement exclusive or in only three instructions on a basic RISC. Using only and-
or-not logic requires four instructions ((X | y) & =(x & y)). Similarly, (u) and (v) show how to implement and
and or in three other elementary instructions, whereas using DeMorgan's laws requires four.



2-3 Inequalities among Logical and Arithmetic Expressions

Inequalities among binary logical expressions whose values are interpreted as unsigned integers are nearly
trivial to derive. Here are two examples:

(x@®y)<(x | py), and

(x&y)<(x=y).

These can be derived from alist of all binary logical operations, shownin Table 2-1.

Let f(x, y) and g(X, y) represent two columnsin Table 2-1. If for each row in which f(x, y) is 1, g(x, y) dlsois 1,
then for all (x, y), fix, ¥) = glx, y). Clearly, this extends to word-parallel logical operations. One can easily

read off such relations (most of which are trivial) as (* &y)sx<(x | =v)andsoon. Furthermore, if two
columns have arow in which one entry is 0 and the other is 1, and another row in which the entriesare 1 and 0,
respectively, then no inequality relation exists between the corresponding logical expressions. So the question

] v 0 . .
of whether or not S, 1) < glx, v) is completely and easily solved for al binary logical functionsf and g.

Table 2-1. The 16 Binary Logical Operations

X|Y[0[x&y | x& =y x| -x&y |y|, €Dy | XY | =XY) [ xFy |~y x|~y | x| x|y | ~(x&}y) |1
000 0 00 00 0 A 1 1 1 11 1 1
0100 0 01 111 1 0 0 0 [0 1 1 1 1
10010 1 100 01 1 0 0 1 1 0 0 1 1
11012 0 10 10 1 0 1 0 0 11 0 1
Use caution when manipulating these relations. For example, for ordinary arithmetic, if x +y <aandz Ex,

<

then z+y —=a. But thisinferenceis not valid if "+" is replaced with or.

Inequalities involving mixed logical and arithmetic expressions are more interesting. Below is asmall selection.
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(x | ») 2 max(x, y)

a
b. (x & y) < min(x, y)

c. (x | y)<x+p itthe addition does not overflow
d (x | y)£x+y ifthe addition overflows

e. lx—y <(x® V)

i
The proofs of these are quite simple, except possibly for the relation x—pl<(x@y). By |X - y| we mean
the absolute value of x -y, which may be computed within the domain of unsigned numbers as max(x, y) - min
(x, y). Thisrelation may be proven by induction on the length of x and y (the proof is alittle easier if you
extend them on the left rather than on the right).



2-4 Absolute Value Function

If your machine does not have an instruction for computing the absolute value, this computation can usually be

donein three or four branch-free instructions. First, compute yexs3 1and then one of the following:
abs nabs

(x@y)-y y=(x@®y)

(x+ )@y (y—x)@y

x—(2x & y) (Zx & y)-x

By "2x" we mean, of course, X + X or X << 1.

If you have afast multiply by avariable whose value is £1, the following will do:

((x=30) | 1)#x



2-5 Sign Extension

By "sign extension,” we mean to consider a certain bit position in aword to be the sign bit, and we wish to
propagate that to the left, ignoring any other bits present. The standard way to do thisis with shift left logical
followed by shift right signed. However, if these instructions are slow or nonexistent on your machine, it may
be done with one of the following, where we illustrate by propagating bit position 7 to the left:

((x + 0x00000080) & 0x000000FF) — 0x00000080
((x & 0x000000FF) @ 0x00000080) — 0x0000 0080

The"+" above can also be"-" or $ The second formulais particularly useful if you know that the unwanted
high-order bitsare al 0's, because then the and can be omitted.



2-6 Shift Right Signed from Unsigned

If your machine does not have the shift right signed instruction, it may be computed using the formulas shown
below. Thefirst formulaisfrom [GM], and the second is based on the same idea. Assuming the machine has

mod 64 shifts, the first four formulas hold for O <n ':—:31, and the last holds for O <n ':—:63. Thelast formula
holds for any nif by "holds" we mean "treats the shift amount to the same modulus as does the logical shift."

When nisavariable, each formularequiresfive or six instructions on abasic RISC.

((x + 0x80000000) <% 7) — (0x80000000 2 )
t— OxB80000000 = n; ((x=n)®H—t
e (x & 0x80000000) =% n; (x==n)—(t+1)
(x%nm) | (—(x=%31)=<31-n)
te——(x531) (x®HN=n)Df

i

In the first two formulas, an alternative for the expression Ox80000000 == nisq1 <<31-n.

If nisaconstant, the first two formulas require only three instructions on many machines. If n = 31, the

L
function can be doneiin two instructionswith — (X == 3 1).
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2-7 Sign Function

The sign, or signum, function is defined by

1, x<0,
sign(x) = 4 0, x=0,
I, x>0

It may be calculated with four instructions on most machines [Hop]:

(x=31) | (—x=31)

If you don't have shift right signed, then use the substitute noted at the end of Section 2-6, giving the following
nicely symmetric formula (five instructions):

—(x=3D | (—x=31)

Comparison predicate instructions permit a three-instruction solution, with either

Equation 3

(x>0)—(x<0), or
(x=20)—(x=<0).

Ay (x L3 -
Finally, we note that the formula (=x=31)—(x =31 ) almost works; it failsonly for x = -231,
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2-8 Three-Valued Compare Function

The three-valued compar e function, a dight generalization of the sign function, is defined by

-1, x<y,
cmplx, ) = ¢ 0, x=y,
I, x>

There are both signed and unsigned versions, and unless otherwise specified, this section applies to both.

Comparison predicate instructions permit a three-instruction solution, an obvious generalization of Equations

(3):

(x>y)—-(x<y). or
(x2y)-(x=y).

A solution for unsigned integers on PowerPC is shown below [CWG]. On this machine, "carry"” is"not borrow."

subf R5, Ry, Rx # R5 <-- RXx - Ry.

subfc R6, Rx, Ry # R6 <-- Ry Rx, set carry.

subfe R7, Ry, Rx # R7 <-- Rx - Ry + carry, set carry.
subfe R8, R7, R5 # R8 <-- R5 R7 + carry, (set carry).

If limited to the instructions of the basic RISC, there does not seem to be any particularly good way to compute

this function. The comparison predicates x <y, x Ey, and so on, require about five instructions (see Section 2-

11), leading to a solution in about 12 instructions (using a small amount of commonality in computing x <y

and x >y). On the basic RISC it's probably preferable to use compares and branches (six instructions executed
worst case if compares can be commoned).
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2-9 Transfer of Sign

The transfer of sign function, called ISIGN in Fortran, is defined by

abs(x), y=0,

ISIGN{,{I:_}I} = { dh.‘!(x} y< ()

This function can be calculated (modulo 232) with four instructions on most machines:

f— y=31; 1 (x® yp)=31;
ISIGN(x, ) = (abs(x)Dt)—1 ISIGN(x, p) = (xE2D—t¢
= (abs(x)+¢) P 1 = (x+t8) @t



2-10 Decoding a "Zero Means 2**n" Field

Sometimes a 0 or negative value does not make much sense for a quantity, so it is encoded in an n-bit field with
a 0 value being understood to mean 2", and a non-zero value having its normal binary interpretation. An
exampleisthe length field of PowerPC's load string word immediate (I swi ) instruction, which occupies five
bits. It is not useful to have an instruction that loads zero bytes, when the length is an immediate quantity, but it
is definitely useful to be able to load 32 bytes. The length field could be encoded with values from 0 to 31
denoting lengths from 1 to 32, but the "zero means 32" convention resultsin ssmpler logic when the processor

must also support a corresponding instruction with a variable (in-register) length that employs straight binary
encoding (e.g., PowerPC's| swx instruction).

Itistrivia to encode an integer in the range 1 to 2" into the "zero means 2™ encoding—simply mask the
integer with 2" - 1. To do the decoding without a test-and-branch is not quite as simple, but below are some

possibilities (no doubt overdone), illustrated for a 3-bit field. They all require three instructions, not counting
possible loads of constants.

((x—1)&T7)+1 ((x+7) | -8)+9 8- (—x&T)
((x+T7)&T)+1 ((x+7) | 8)-7 ~(-x | - 8)
((x—1) | -8)+9 ((x-1)&8) +x



2-11 Comparison Predicates

A "comparison predicate” is afunction that compares two quantities, producing a single bit result of 1 if the
comparisonistrue, and O if the comparison isfalse. Below we show branch-free expressions to evaluate the
result into the sign position. To produce the 1/0 value used by some languages (e.g., C), follow the code with a
shift right of 31. To produce the -1/0 result used by some other languages (e.g., Basic), follow the code with a
shift right signed of 31.

These formulas are, of course, not of interest on machines such as MIPS, the Compaqg Alpha, and our model
RISC, which have comparison instructions that compute many of these predicates directly, placing a 0/1-valued
result in ageneral purpose register.

A machine instruction that computes the negative of the absolute value is handy here. We show this function as
"nabs." Unlike absolute value, it iswell defined in that it never overflows. Machines that do not have "nabs’ but
have the more usual "abs"' can use -abs(x) for nabs(x). If x isthe maximum negative number, this overflows
twice, but the result is correct. (We assume that the absol ute value and the negation of the maximum negative
number isitself.) Because some machines have neither "abs' nor "nabs," we give an alternative that does not
use them.

The"nlz" function is the number of leading zerosin its argument. The "doz" function (difference or zero) is
described on page 37.



x=y abs(x— y) -1
abs(x — y + 0x80000000)
nlz(x - y) << 26
(nlz(x — y) = 3)
—(x—y | y-x)

X #y nabs(x — y)
nlz(x — y)— 32
x-y|yp-x
x<y: (x=p)@[(xDy) &((x-y) Dx)]
(x&=y) | ((x=p) & (x-y))
nabs(doz(y, x)) [GSO]
x <y (x | 2 &((x@ p) | ~(y-x))
((x=p)=1)+(x&=y) [GSO]
X<y (mx&y) | ((x=p)&(x—y))
(mx&y) | ((—x | )& (x—p))
X<y (x| »&(x@y) | —=(y—x))

For x >y, X -Ey, and so on, interchange x and y in the formulas for x <y x ':—:y, and so on. The add of

0x80000000 may be replaced with any instruction that inverts the high-order bit (inx, y, or x - y).

Another class of formulas can be derived from the observation that the predicate X <y is given by the sign of
x/2 - y/I2, and the subtraction in that expression cannot overflow. The result can be fixed up by subtracting 1in
the cases in which the shifts discard essential information, as follows:

X<y (x=1-(r=1-(-x&y&1)
X <y (xS 1) () (—x&p&l)

These execute in seven instructions on most machines (six if it has and not), which is no better than what we



have above (five to seven instructions, depending upon the fullness of the set of logic instructions).

The formulas above involving "nlz" are due to [ Shep], and hisformulafor the x =y predicate is particularly

useful because aminor variation of it gets the predicate evaluated to a 1/0-valued result with only three
instructions:

nlz(x — y) = 5.

Signed comparisons to 0 are frequent enough to deserve special mention. Below are some formulas for these,
mostly derived directly from the above. Again, the result isin the sign position.
x=0: abs(x) - 1
abs(x + 0x80000000)
nlz(x) <= 26
—(nlz(x) == 5)
—(x | —x)
—x&(x-1)
x=0: nabs(x)
nlz{x)— 32
x| -=x
(x5 1)-x [CWG]
x<0: X
x=0: x| (x-1)
x| -—x
x=10: x & nabs(x)
(x=1)-x
—x & =x

x=0: —X
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Signed comparisons can be obtained from their unsigned counterparts by biasing the signed operands upwards
by 231 and interpreting the results as unsigned integers. The reverse transformation also works. Thus we have

x<y=x+23 2 p+23

x&y=x-23<yp-23

i
Similar relations hold for = » = »and so on. Addition and subtraction of 231 are equivalent, as they amount to
inverting the sign bit.

Another way to get signed comparisons from unsigned is based on the fact that if x and y have the same sign,

| = [ L - . . —
then * < J X < ¥Vswhereasif they have opposite signs, then X<y
reverse transformation also works, so we have

.l:' ¥
A+ = ¥[Lamp]. Again, the

x<y=(xzy)@x;; @y; and

I

X<y = (x<y)Dx; B py,

i
where x3,and y3; are the sign bits of x andy, respectively. Similar relations hold for <, = *and so on.

Using either of these devices enables computing all the usual comparison predicates other than = and Zin
terms of any one of them, with at most three additional instructions on most machines. For example, let us take

I
XE Vas primitive, because it is one of the simplest to implement (it is the carry bit fromy - x). Then the other
predicates can be obtained as follows:
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x<y = —=(p+23 < x+23)

|

x<y =x+23 < p4 23
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Comparison Predicates from the Carry Bit

If the machine can easily deliver the carry bit into a general purpose register, this may permit concise code for
some of the comparison predicates. Below are listed several of these relations. The notation carry(expression)
means the carry bit generated by the outermost operation in expression. We assume the carry bit for the
subtraction x - y iswhat comes out of the adder for x +y + 1, which is the complement of "borrow."

X =y carry(0 = (x — y)), or carry((x + y) + 1), or
carry((x—y—-1)+1)

xX#y: carry((x — y) = 1), re, carry({x = y) +(-1))

x<y: —carry((x + 231) — (y + 231))

x<y: carry((y + 231) — (x + 231))

X <y —carry(x — y)

x<y: carry(y — x)

x=10: carry(0 — x), or carry(x + 1)

x#0: carry(x — 1), i.e., carry(x + (—1})

x<0: carry(x + x)

x<0: carry(23! — (x + 231))



For x >y, use the complement of the expression for x Ey, and similarly for other relationsinvolving "greater

than.”

The GNU Superoptimizer has been applied to the problem of computing predicate expressions on the IBM
RS6000 computer and its close relative PowerPC [GK]. The RS/6000 has instructions for abs(x), nabs(x), doz
(X, y), and anumber of forms of add and subtract that use the carry bit. It was found that the RS/6000 can
compute all the integer predicate expressions with three or fewer elementary (one-cycle) instructions, aresult
that surprised even the architects of the machine. "All" includes the six two-operand signed comparisons and
the four two-operand unsigned comparisons, all of these with the second operand being O, and all in forms that
produce a 1/0 result or a-1/0 result. PowerPC, which lacks abs(x), nabs(x), and doz(x, y), can compute all the
predicate expressions in four or fewer elementary instructions.

How the Computer Sets the Comparison Predicates

Most computers have away of evaluating the integer comparison predicates to a 1-bit result. The result bit may
be placed in a"condition register” or, for some machines (such as our RISC model), in ageneral purpose
register. In either case, the facility is often implemented by subtracting the comparison operands and then
performing a small amount of logic on the result bits to determine the 1-bit comparison result.

Below isthelogic for these operations. It is assumed that the machine computesx -yasx +y + 1, and the
following quantities are available in the result:

C,, the carry out of the high-order position
C;, the carry into the high-order position

N, the sign bit of the result

Z, which equals 1 if the result, exclusive of C, is all-0, and is otherwise O

Then we have the following in Boolean algebra notation (juxtaposition denotes and, + denotes or):
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x=y
X#E )
X<y
Xy
x>y

X2y

i

X<y

5

X<y

I

Xy

)

X= )

C,ecC, (signed overflow)
£

Z

N®V

(Nd )+ 2

(N=1)Z

N=F

™

i

’n-+‘?"l
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™~y

¥



2-12 Overflow Detection

"Overflow" means that the result of an arithmetic operation is too large or too small to be correctly represented
in the target register. This section discusses methods that a programmer might use to detect when overflow has
occurred, without using the machine's "status bits' that are often supplied expressly for this purpose. Thisis
important because some machines do not have such status bits (e.g., MIPS), and because even if the machineis
SO equipped, it is often difficult or impossible to access the bits from a high-level language.

Signed Add/Subtract

When overflow occurs on integer addition and subtraction, contemporary machines invariably discard the high-
order bit of the result and store the low-order bits that the adder naturally produces. Signed integer overflow of
addition occursif and only if the operands have the same sign and the sum has sign opposite to that of the
operands. Surprisingly, this same rule applies even if thereisacarry into the adder—that is, if the calculation is
x +y + 1. Thisisimportant for the application of adding multiword signed integers, in which the last addition is
asigned addition of two fullwords and a carry-in that may be O or +1.

To prove therule for addition, let x and y denote the values of the one-word signed integers being added, let c
(carry-in) be 0 or 1, and assume for simplicity a4-bit machine. Then if the signs of x and y are different,

B<yr=<-—|.and

D=y=T,

or similar bounds apply if X is nonnegative and y is negative. In either case, by adding these inequalities and
optionally adding in 1 for c,

—BZxt+ytesT.

Thisisrepresentable as a 4-hit signed integer, and thus overflow does not occur when the operands have
opposite signs.

Now suppose x and y have the same sign. There are two cases:
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8= y=-1] D=x=7
L Uy D=y<7
Thus,
(a) (b)
lo=x+y+e=s-—1 =x+y+e=ls.

Overflow occursif the sum is not representable as a 4-bit signed integer— that is, if

(a) (b)

l6=x+y+te=-9 B=x+ty+te=1s5,

In case (a), thisis equivalent to the high-order bit of the 4-bit sum being O, which is opposite to the sign of x
andy. In case (b), thisis equivaent to the high-order bit of the 4-bit sum being 1, which again is opposite to the
signof x and y.

For subtraction of multiword integers, the computation of interestisx - y- cwhereagaincisOor 1, witha
value of 1 representing a borrow-in. From an analysis similar to the above, it can be seen that overflow in the
final value of x - y - coccursif and only if x and y have opposite signs and the sign of X - y - c is opposite to
that of x (or, equivalently, the same as that of y).

This leads to the following expressions for the overflow predicate, with the result being in the sign position.
Following these with a shift right or shift right signed of 31 produces a 1/0- or a -1/0-valued result.

X+t yte X—y-—¢
(x=y)&((x+y+c)Dx) (x@ p)& ((x—y—¢c) ® x)
((x+tyte)@x)&((x+tyte)@y) ((x-p-c)@Bx)&((x-p-c)=y)

By choosing the second alternative in the first column, and the first alternative in the second column (avoiding



the equivalence operation), our basic RISC can evaluate these tests with three instructions in addition to those
required to compute x +y + cor X - y - ¢. A fourth instruction (branch if negative) may be added to branch to
code where the overflow condition is handled.

If executing with overflow interrupts enabled, the programmer may wish to test to seeif a certain addition or
subtraction will cause overflow, in away that does not cause it. One branch-free way to do thisis asfollows:

x+y+e xX—y-—c
7 (x=y) & 0x80000000 7 (x @ y) & 0x8000 0000
(x=p)&((xBz)Tyte)=y (x@y)&((x@z)-y-c)By

The assignment to zin the left column sets z = 0x80000000 if x and y have the same sign, and setsz= 0 if they
differ. Then, the addition in the second expression is done with x and y having different signs, so it can't
overflow. If x and y are nonnegative, the sign bit in the second expression will be 1 if and only if (x - 231) +y +

¢ =0—that is, iff x+y+c :_:""231, which isthe condition for overflow inevaluatingx +y + c. If xand y are
negative, the sign bit in the second expression will be 1iff (x + 231) + y + c < 0—that is, iff x + y + ¢ < -231,
which again is the condition for overflow. The term x =y ensures the correct result (0 in the sign position) if x
and y have opposite signs. Similar remarks apply to the case of subtraction (right column). The code executesin
nine instructions on the basic RISC.

It might seem that if the carry from addition is readily available, this might help in computing the signed
overflow predicate. This does not seem to be the case. However, one method along these linesis as follows.

If x isasigned integer, then x + 231 is correctly represented as an unsigned number, and is obtained by
inverting the high-order bit of x. Signed overflow in the positive direction occursif x +y =281 that is, if (x+

231) + (y + 231) =3 . 231 This|atter condition is characterized by carry occurring in the unsigned add (which
means that the sum is greater than or equal to 232) and the high-order bit of the sum being 1. Similarly,
overflow in the negative direction occurs if the carry is 0 and the high-order bit of the sumisalso 0.

This gives the following algorithm for detecting overflow for signed addition:

Compute (x $231) +(y $231), giving sum sand carry c.
Overflow occurred iff ¢ equals the high-order bit of s.

The sum isthe correct sum for the signed addition, because inverting the high-order bits of both operands does
not change their sum.



For subtraction, the algorithm is the same except that in the first step a subtraction replaces the addition. We
assume that the carry isthat generated by computing x - yasx +y + 1. The subtraction is the correct
difference for the signed subtraction.

These formulas are perhaps interesting, but on most machines they would not be quite as efficient as the
formulas that do not even use the carry bit (e.g., overflow = (x =y) & (s $X)for addition, and (x $y) & (d
$x)for subtraction, where s and d are the sum and difference, respectively, of x and y).

How the Computer Sets Overflow for Signed Add/Subtract

Machines often set "overflow" for signed addition by means of the logic "the carry into the sign position is not
equal to the carry out of the sign position.” Curioudly, thislogic gives the correct overflow indication for both
addition and subtraction, assuming the subtraction x - yisdone by x +y + 1. Furthermore, it is correct whether
or not thereis a carry- or borrow-in. This does not seem to lead to any particularly good methods for computing
the signed overflow predicate in software, however, even though it is easy to compute the carry into the sign
position. For addition and subtraction, the carry/borrow into the sign position is given by the sign bit after
evaluating the following expressions (wherecis 0 or 1):

carry borrow
(x+yt+te)BxDy (X=yp—-c)PRxDy

In fact, these expressions give, at each position i, the carry/borrow into positioni.
Unsigned Add/Subtract

The following branch-free code may be used to compute the overflow predicate for unsigned add/subtract, with
the result being in the sign position. The expressions involving aright shift are probably useful only when it is
known that ¢ = 0. The expressions in brackets compute the carry or borrow generated from the least significant
position.



x + yp+ ¢, unsigned
(x& p) | ((x | )& =(x+y+c))
(x5 D+(rsD+H((x&p) | (x| ) &e)) & 1)

x — y— ¢, unsigned
(—x&yp) | ((x=p)&(x-y-c))
(—x&p) [ ((0x | ) &(x-y-0)
(x=1)-(y=D-[(=x&y) | ((=x | ) &e)) &1]

For unsigned add's and subtract's, there are much simpler formulas in terms of comparisons [MIPS]. For
unsigned addition, overflow (carry) occursif the sumisless (by unsigned comparison) than either of the
operands. This and similar formulas are given below. Unfortunately, there is no way in these formulas to allow
for avariable c that represents the carry- or borrow-in. Instead, the program must test ¢, and use a different type
of comparison depending upon whether cisO or 1.

x+ y.unsigned x+p+1,unsigned x— y,unsigned x-—p—1,unsigned
I I L
—xty ~xky xty X2y

xtyzx x+ty+lzx X-y=x x-y-lzx

The first formulafor each case above is evaluated before the add/subtract that may overflow, and it provides a
way to do the test without causing overflow. The second formulafor each case is evaluated after the add/
subtract that may overflow.

There does not seem to be a similar simple device (using comparisons) for computing the signed overflow
predicate.

Multiplication

For multiplication, overflow means that the result cannot be expressed in 32 bits (it can aways be expressed in
64 bits, whether signed or unsigned). Checking for overflow is simpleif you have access to the high-order 32
bits of the product. Let us denote the two halves of the 64-bit product by hi(x x y) and lo(x X y). Then the
overflow predicates can be computed as follows [MIPS]:
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X Xy, unsigned x X y, signed
hilxx y)£0 hi{x % ) # (lo(x X y) = 31)

One way to check for overflow of multiplication isto do the multiplication and then check the result by
dividing. But care must be taken not to divide by O, and there is a further complication for signed
multiplication. Overflow occursif the following expressions are tr ue:

Unsigned Signed
ZEX%Y L X ®Yy
y20&z iy #x (y<0&x=-2%) | (y£0&z+y#x)

The complication arises when x = -231 and y = -1. In this case the multiplication overflows, but the machine
may very well give aresult of -231. This causes the division to overflow, and thus any result is possible (for
some machines). Therefore, this case has to be checked separately, which is done by thetermy <0 & x =-231,
The above expressions use the "conditional and" operator to prevent dividing by O (in C, use the && operator).

It is also possible to use division to check for overflow of multiplication without doing the multiplication (that
is, without causing overflow). For unsigned integers, the product overflowsiff xy > 232 -1, or x> ((232 - 1)/ y,

or, sincex isan integer, * = L(2# -1 ]”H-"J-Expr%sed in computer arithmetic, thisis

y#0 & x ¥ (0xFFFFFFFF £ y).

For signed integers, the determination of overflow of x * yisnot so ssmple. If x and y have the same sign, then
overflow occursiff xy > 231 - 1. If they have opposite signs, then overflow occurs iff xy < -231. These
conditions may be tested as indicated in Table 2-2, which employs signed division.

Table 2-2. Overflow Test for Signed Multiplication
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x>0 X > OX7FFFFFFF +y y < 0x80000000 + x

x =0 X <0x80000000+y x#0 &y < 0xTFFFFFFF + x

Thistest is awkward to implement because of the four cases. It is difficult to unify the expressions very much
because of problems with overflow and with not being able to represent the number +231.

The test can be simplified if unsigned division is available. We can use the absolute values of x and y, which
are correctly represented under unsigned integer interpretation. The complete test can then be computed as
shown below. The variable c = 231 - 1 if x and y have the same sign, and ¢ = 231 otherwise.

e ((x=p)=31)+23
x < abs(x)

y e abs(y)

20 &x=(cly)

The number of leading zeros instruction may be used to give an estimate of whether or not x * y will overflow,
and the estimate may be refined to give an accurate determination. First, consider the multiplication of unsigned
numbers. It is easy to show that if x and y, as 32-bit quantities, have mand n leading O's, respectively, then the
64-bit product has either m+ nor m+ n + 1 leading O's (or 64, if either x =0 or y = 0). Overflow occursif the
64-bit product has fewer than 32 leading 0's. Hence,

nlz{x) + nlz(y) = 32: Mulaplication definitely does not overflow.

nlz{x) + nlz(y) < 30: Multiplication definitely does overflow,

For nlz(x) + nlz(y) = 31, overflow may or may not occur. In this case, the overflow assessment may be made by

evaluating T = xLy/2 ) Thiswill not overflow. Sincexyis2tor, if yisodd, 2t + x, the product xy overflows

if t =231, These considerations lead to a plan for computing xy but branching to "overflow" if the product
overflows. This plan is shown in Figure 2-2.

Figure 2-2 Determination of overflow of unsigned multiplication.

unsigned x, y, z, m n, t;
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m = nl z(x);
n = nlz(y);
If (m+ n <= 30) goto overfl ow
t = x*(y > 1);
if ((int)t < 0) goto overflow
zZ = t*2;
i (y &1) {
zZ =z + X;
If (z < x) goto overflow,

}

/1 z is the correct product of x and vy.

For the multiplication of signed integers, we can make a partial determination of whether or not overflow
occurs from the number of leading 0's of nonnegative arguments, and the number of leading 1's of negative
arguments. Let

m = nlz{x) + nlz(x). and
n = nlz(y) + nlz(y).

Then, we have

m + n =2 34: Multiplication definitely does not overflow.

m + n = 31: Multiplication definitely does overflow.

There are two ambiguous cases. 32 and 33. The case m + n = 33 overflows only when both arguments are
negative and the true product is exactly 231 (machine result is-231), so it can be recognized by atest that the

product has the correct sign (that is, overflow occurred if m @n @(m * n) <0). When m+ n =32, the
distinction is not so easily made.

We will not dwell on this further, except to note that an overflow estimate for signed multiplication can also be
made based on nlz(abs(x)) + nlz(abs(y)), but again there are two ambiguous cases (a sum of 31 or 32).

Division

For the signed division x +y, overflow occursif the following expression istrue:



y=0 | (x=0x80000000 & y = -1)

Most machines signal overflow (or trap) for the indeterminate form O + 0.

Straightforward code for evaluating this expression, including afinal branch to the overflow handling code,
consists of seven instructions, three of which are branches. There do not seem to be any particularly good tricks
to improve on this, but below are afew possibilities:

[abs(y @ 0x80000000) | (abs(x) & abs(y = 0x80000000))] <0

That is, evaluate the large expression in brackets, and branch if the result isless than 0. This executes in about
nine instructions, counting the load of the constant and the final branch, on a machine that has the indicated
instructions and that gets the "compare to 0" for free.

Some other possibilities are to first compute z from

z 4 (x @ 0x80000000) | (p+1)

(three instructions on many machines), and then do the test and branch ony = 0|z = 0in one of the following
ways.

((y|-m&(z|-2))=z0
(nabs(y) & nabs(z)) =0
((nlz(y») | nlz(z)) = 5)=0

These execute in nine, seven, and eight instructions, respectively, on a machine that has the indicated
instructions. The last line represents a good method for PowerPC.

For the unsigned division * £ ¥+ overflow occurs if and only if y = 0.






2-13 Condition Code Result of Add, Subtract, and Multiply

Many machines provide a "condition code" that characterizes the result of integer arithmetic operations. Often
there is only one add instruction, and the characterization reflects the result for both unsigned and signed
interpretation of the operands and result (but not for mixed types). The characterization usually consists of the
following:

e Whether or not carry occurred (unsigned overflow)
e Whether or not signed overflow occurred

*  Whether the 32-bit result, interpreted as a signed two's-complement integer and ignoring carry and
overflow, is negative, O, or positive

Some older machines give an indication of whether the infinite precision result (that is, 33-bit result for add's
and subtract's) is positive, negative, or 0. However, thisindication is not easily used by compilers of high-level
languages, and so has fallen out of favor.

For addition, only nine of the 12 combinations of these events are possible. The ones that cannot occur are "no
carry, overflow, result > 0," "no carry, overflow, result = 0," and "carry, overflow, result < 0." Thus, four bits
are, just barely, needed for the condition code. Two of the combinations are unique in the sense that only one
value of inputs produces them: Adding O to itself isthe only way to get "no carry, no overflow, result = 0," and
adding the maximum negative number to itself isthe only way to get "carry, overflow, result = 0." These
remarks remain true if thereisa"carry in"—that is, if we are computing x +y + 1.

For subtraction, let us assume that to compute x - y the machine actually computesx +y + 1, with the carry
produced as for an add (in this scheme the meaning of "carry" isreversed for subtraction, in that carry = 1
signifiesthat the result fitsin asingle word, and carry = 0 signifies that the result does not fit in asingle word).
Then for subtraction only seven combinations of events are possible. The ones that cannot occur are the three
that cannot occur for addition, plus "no carry, no overflow, result = 0," and "carry, overflow, result = 0."

If amachine's multiplier can produce a doubleword result, then two multiply instructions are desirable: one for
signed and one for unsigned operands. (On a 4-bit machine, in hexadecimal, F x F =01 signed,and F x F = E1
unsigned). For these instructions, neither carry nor overflow can occur, in the sense that the result will always
fit in a doubleword.

For amultiplication instruction that produces a one-word result (the low-order word of the doubleword result),
let us take "carry” to mean that the result does not fit in aword with the operands and result interpreted as
unsigned integers, and let us take "overflow" to mean that the result does not fit in aword with the operands
and result interpreted as signed two's-complement integers. Then again, there are nine possible combinations of
results, with the missing ones being "no carry, overflow, result > 0," "no carry, overflow, result = 0," and
"carry, no overflow, result = 0." Thus, considering addition, subtraction, and multiplication together, ten



combinations can occur.



2-14 Rotate Shifts

These are rather trivial. Perhaps surprisingly, this code works for n ranging from 0 to 32 inclusive, even if the
shifts are mod-32.

Rotate left n: ye (x<==n) | (x = (32-n))

Rotate right n: ye(x=n) | (x=<(32—-n))



2-15 Double-Length Add/Subtract

Using one of the expressions shown on page 29 for overflow of unsigned addition and subtraction, we can
easily implement double-length addition and subtraction without accessing the machine's carry bit. To illustrate
with double-length addition, let the operands be (x4, Xg) and (y4, Yp), and the result be (z;, z;). Subscript 1

denotes the most significant half, and subscript O the least significant. We assume that all 32 bits of the registers
are used. The less significant words are unsigned quantities.

Xyt
[T

C [{-‘:n & o) | ((xy | Vo) & =)l =3

;l{_""l } _F] LR s

This executes in nine instructions. The second linecanbe € <~ (2 = IU] *permitting a four-instruction
solution on machines that have this comparison operator in aform that givestheresult asal or O in aregister,
such asthe "SLTU" (Set on Less Than Unsigned) instruction on MIPS [MIPS].

Similar code for double-length subtraction (x - y) is
2 X — Vo
b [(—xg& py) | ((xy=py) & 2¢)] = 31

X -y b

This executes in eight instructions on a machine that has afull set of logical instructions. The second line can
- i "

be b {lﬂ' =¥ rJ‘)‘permitti ng a four-instruction solution on machines that have the"SLTU" instruction.

Double-length addition and subtraction can be done in five instructions on most machines by representing the

multiple-length data using only 31 bits of the least significant words, with the high-order bit being O except
momentarily when it contains a carry or borrow bit.
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2-16 Double-Length Shifts

Let (X4, Xg) beapair of 32-bit words to be shifted left or right asif they were asingle 64-bit quantity, with x4
being the most significant half. Let (y4, yg) be the result, interpreted similarly. Assume the shift amount nisa

variable ranging from O to 63. Assume further that the machine's shift instructions are modulo 64 or grezter.
That is, a shift amount in the range 32 to 63 or -32 to -1 resultsin an all-0 word, unless the shift is a signed right
shift, in which case the result is 32 sign bits from the word shifted. (This code will not work on the Intel x86
machines, which have mod-32 shifts.)

Under these assumptions the shift |eft double operation may be accomplished as follows (eight instructions):

ypeex=n | xy5 (32-n0) | xp =< (n-32)

Yo & Xp=<n

The main connective in the first assignment must be or, not plus, to give the correct result when n=32. If itis
known that 0 Sn ':—:32, the last term of the first assignment may be omitted, giving a six-instruction solution.

Similarly, a shift right double unsigned operation may be done with

Vo Xg=n | x, <= (32-n) | x;=(n-32)

It
VX =0,

Shift right double signed is more difficult, because of an unwanted sign propagation in one of the terms.
Straightforward code follows:

if #<32then p, e x;5n | x, << (32-n)
else yy < x, = (n-32)

Y X =0



If your machine has the conditional move instructions, it is a simple matter to express this in branch-fr